popsynth.aux_samplers package
Submodules
- popsynth.aux_samplers.delta_aux_sampler module
- popsynth.aux_samplers.lognormal_aux_sampler module
- popsynth.aux_samplers.normal_aux_sampler module
- popsynth.aux_samplers.plaw_aux_sampler module
- popsynth.aux_samplers.sky_sampler module
- popsynth.aux_samplers.trunc_normal_aux_sampler module
- popsynth.aux_samplers.viewing_angle_sampler module
Module contents
- class popsynth.aux_samplers.DeltaAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler- xp
- sigma
- __init__(name: str, observed: bool = True)[source]
A delta-function sampler for which the true value is fixed at
xp. Assumes property is observed by default, in which case the observed value is sampled from the true value with some normally-distributed error,sigma.- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xp (
AuxiliaryParameter) – Value at which delta function is locatedsigma (
AuxiliaryParameter) – Standard deviation of normal distribution from which observed values are sampled, ifobservedis True
- class popsynth.aux_samplers.ViewingAngleSampler[source]
Bases:
NonObservedAuxSampler- max_angle
- class popsynth.aux_samplers.LogNormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler- mu
- tau
- sigma
- __init__(name: str, observed: bool = True)[source]
A Log normal sampler, where property ~ e^N(
mu,sigma).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter) – Mean of the lognormaltau (
AuxiliaryParameter) – Standard deviation of the lognormalsigma (
AuxiliaryParameter) – Standard deviation of normal distribution from which observed values are sampled, ifobservedis True
- class popsynth.aux_samplers.Log10NormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler- mu
- tau
- sigma
- __init__(name: str, observed: bool = True)[source]
A Log10 normal sampler, where property ~ 10^N(
mu,sigma).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter) – Mean of the log10normaltau (
AuxiliaryParameter) – Standard deviation of the log10normalsigma (
AuxiliaryParameter) – Standard deviation of normal distribution from which observed values are sampled, ifobservedis True
- class popsynth.aux_samplers.NormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler- mu
- tau
- sigma
- __init__(name: str, observed: bool = True)[source]
A normal distribution sampler, where property ~ N(
mu,sigma).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter) – Mean of the normaltau (
AuxiliaryParameter) – Standard deviation of the normalsigma (
AuxiliaryParameter) – Standard deviation of normal distribution from which observed values are sampled, ifobservedis True
- class popsynth.aux_samplers.TruncatedNormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler- mu
- tau
- lower
- upper
- sigma
- __init__(name: str, observed: bool = True)[source]
A truncated normal sampler, where property ~ N(
mu,sigma), betweenlowerandupper.- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter) – Mean of the normaltau (
AuxiliaryParameter) – Standard deviation of the normallower (
AuxiliaryParameter) – Lower bound of the truncationupper (
AuxiliaryParameter) – Upper bound of the truncationsigma (
AuxiliaryParameter) – Standard deviation of normal distribution from which observed values are sampled, ifobservedis True
- class popsynth.aux_samplers.ParetoAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler- xmin
- alpha
- sigma
- __init__(name: str, observed: bool = True)[source]
A pareto distribution sampler, where property ~ 1 / x^(
alpha+ 1).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xmin (
AuxiliaryParameter) – Minimum value of the paretoalpha (
AuxiliaryParameter) – Index of the paretosigma (
AuxiliaryParameter) – Standard deviation of normal distribution from which observed values are sampled, ifobservedis True
- class popsynth.aux_samplers.PowerLawAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler- xmin
- xmax
- alpha
- sigma
- __init__(name: str, observed: bool = True)[source]
A bounded power law distribution sampler, where property ~ x^``alpha``.
- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xmin (
AuxiliaryParameter) – Minimum value of the power lawxmax (:class:``AuxiliaryParameter) – Maximum value of the power law
sigma (
AuxiliaryParameter) – Standard deviation of normal distribution from which observed values are sampled, ifobservedis True
- class popsynth.aux_samplers.BrokenPowerLawAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler- xmin
- alpha
- xbreak
- beta
- xmax
- __init__(name: str, observed: bool = True)[source]
A broken power law distribution sampler, where property ~ x^``alpha`` for x <
xbreak, and property ~ x^``beta`` for x >xbreak.- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xmin (
AuxiliaryParameter) – Minimum value of the broken power lawxmax (:class:``AuxiliaryParameter) – Maximum value of the broken power law
sigma (
AuxiliaryParameter) – Standard deviation of normal distribution from which observed values are sampled, ifobservedis True