popsynth.aux_samplers package
Submodules
- popsynth.aux_samplers.delta_aux_sampler module
- popsynth.aux_samplers.lognormal_aux_sampler module
- popsynth.aux_samplers.normal_aux_sampler module
- popsynth.aux_samplers.plaw_aux_sampler module
- popsynth.aux_samplers.sky_sampler module
- popsynth.aux_samplers.trunc_normal_aux_sampler module
- popsynth.aux_samplers.viewing_angle_sampler module
Module contents
- class popsynth.aux_samplers.DeltaAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- xp
- sigma
- __init__(name: str, observed: bool = True)[source]
A delta-function sampler for which the true value is fixed at
xp
. Assumes property is observed by default, in which case the observed value is sampled from the true value with some normally-distributed error,sigma
.- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xp (
AuxiliaryParameter
) – Value at which delta function is locatedsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.ViewingAngleSampler[source]
Bases:
NonObservedAuxSampler
- max_angle
- class popsynth.aux_samplers.LogNormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- mu
- tau
- sigma
- __init__(name: str, observed: bool = True)[source]
A Log normal sampler, where property ~ e^N(
mu
,sigma
).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter
) – Mean of the lognormaltau (
AuxiliaryParameter
) – Standard deviation of the lognormalsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.Log10NormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- mu
- tau
- sigma
- __init__(name: str, observed: bool = True)[source]
A Log10 normal sampler, where property ~ 10^N(
mu
,sigma
).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter
) – Mean of the log10normaltau (
AuxiliaryParameter
) – Standard deviation of the log10normalsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.NormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- mu
- tau
- sigma
- __init__(name: str, observed: bool = True)[source]
A normal distribution sampler, where property ~ N(
mu
,sigma
).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter
) – Mean of the normaltau (
AuxiliaryParameter
) – Standard deviation of the normalsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.TruncatedNormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- mu
- tau
- lower
- upper
- sigma
- __init__(name: str, observed: bool = True)[source]
A truncated normal sampler, where property ~ N(
mu
,sigma
), betweenlower
andupper
.- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter
) – Mean of the normaltau (
AuxiliaryParameter
) – Standard deviation of the normallower (
AuxiliaryParameter
) – Lower bound of the truncationupper (
AuxiliaryParameter
) – Upper bound of the truncationsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.ParetoAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- xmin
- alpha
- sigma
- __init__(name: str, observed: bool = True)[source]
A pareto distribution sampler, where property ~ 1 / x^(
alpha
+ 1).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xmin (
AuxiliaryParameter
) – Minimum value of the paretoalpha (
AuxiliaryParameter
) – Index of the paretosigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.PowerLawAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- xmin
- xmax
- alpha
- sigma
- __init__(name: str, observed: bool = True)[source]
A bounded power law distribution sampler, where property ~ x^``alpha``.
- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xmin (
AuxiliaryParameter
) – Minimum value of the power lawxmax (:class:``AuxiliaryParameter) – Maximum value of the power law
sigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.BrokenPowerLawAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- xmin
- alpha
- xbreak
- beta
- xmax
- __init__(name: str, observed: bool = True)[source]
A broken power law distribution sampler, where property ~ x^``alpha`` for x <
xbreak
, and property ~ x^``beta`` for x >xbreak
.- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xmin (
AuxiliaryParameter
) – Minimum value of the broken power lawxmax (:class:``AuxiliaryParameter) – Maximum value of the broken power law
sigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True