popsynth.aux_samplers package
Submodules
popsynth.aux_samplers.delta_aux_sampler module
- class popsynth.aux_samplers.delta_aux_sampler.DeltaAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- xp
- sigma
- __init__(name: str, observed: bool = True)[source]
A delta-function sampler for which the true value is fixed at
xp
. Assumes property is observed by default, in which case the observed value is sampled from the true value with some normally-distributed error,sigma
.- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xp (
AuxiliaryParameter
) – Value at which delta function is locatedsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
popsynth.aux_samplers.lognormal_aux_sampler module
- class popsynth.aux_samplers.lognormal_aux_sampler.LogNormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- mu
- tau
- sigma
- __init__(name: str, observed: bool = True)[source]
A Log normal sampler, where property ~ e^N(
mu
,sigma
).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter
) – Mean of the lognormaltau (
AuxiliaryParameter
) – Standard deviation of the lognormalsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.lognormal_aux_sampler.Log10NormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- mu
- tau
- sigma
- __init__(name: str, observed: bool = True)[source]
A Log10 normal sampler, where property ~ 10^N(
mu
,sigma
).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter
) – Mean of the log10normaltau (
AuxiliaryParameter
) – Standard deviation of the log10normalsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
popsynth.aux_samplers.normal_aux_sampler module
- class popsynth.aux_samplers.normal_aux_sampler.NormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- mu
- tau
- sigma
- __init__(name: str, observed: bool = True)[source]
A normal distribution sampler, where property ~ N(
mu
,sigma
).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter
) – Mean of the normaltau (
AuxiliaryParameter
) – Standard deviation of the normalsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
popsynth.aux_samplers.plaw_aux_sampler module
- class popsynth.aux_samplers.plaw_aux_sampler.ParetoAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- xmin
- alpha
- sigma
- __init__(name: str, observed: bool = True)[source]
A pareto distribution sampler, where property ~ 1 / x^(
alpha
+ 1).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xmin (
AuxiliaryParameter
) – Minimum value of the paretoalpha (
AuxiliaryParameter
) – Index of the paretosigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.plaw_aux_sampler.PowerLawAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- xmin
- xmax
- alpha
- sigma
- __init__(name: str, observed: bool = True)[source]
A bounded power law distribution sampler, where property ~ x^``alpha``.
- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xmin (
AuxiliaryParameter
) – Minimum value of the power lawxmax (:class:``AuxiliaryParameter) – Maximum value of the power law
sigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.plaw_aux_sampler.BrokenPowerLawAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- xmin
- alpha
- xbreak
- beta
- xmax
- __init__(name: str, observed: bool = True)[source]
A broken power law distribution sampler, where property ~ x^``alpha`` for x <
xbreak
, and property ~ x^``beta`` for x >xbreak
.- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xmin (
AuxiliaryParameter
) – Minimum value of the broken power lawxmax (:class:``AuxiliaryParameter) – Maximum value of the broken power law
sigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
popsynth.aux_samplers.sky_sampler module
- class popsynth.aux_samplers.sky_sampler.SkySampler(ra_sampler: Optional[NonObservedAuxSampler] = None, dec_sampler: Optional[NonObservedAuxSampler] = None)[source]
Bases:
object
- __init__(ra_sampler: Optional[NonObservedAuxSampler] = None, dec_sampler: Optional[NonObservedAuxSampler] = None)[source]
A sky sampler that samples angular positions in ra and dec. If no samplers are provided, then loads default samplers that sample uniformly on the unit sphere. RA and dec are in radians.
- Parameters
ra_sampler (
NonObservedAuxSampler
) – Right ascension (RA) samplerdec_sampler (
NonObservedAuxSampler
) – Declination (Dec) sampler
- property ra_sampler
- property dec_sampler
- class popsynth.aux_samplers.sky_sampler.RASampler[source]
Bases:
NonObservedAuxSampler
popsynth.aux_samplers.trunc_normal_aux_sampler module
- class popsynth.aux_samplers.trunc_normal_aux_sampler.TruncatedNormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- mu
- tau
- lower
- upper
- sigma
- __init__(name: str, observed: bool = True)[source]
A truncated normal sampler, where property ~ N(
mu
,sigma
), betweenlower
andupper
.- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter
) – Mean of the normaltau (
AuxiliaryParameter
) – Standard deviation of the normallower (
AuxiliaryParameter
) – Lower bound of the truncationupper (
AuxiliaryParameter
) – Upper bound of the truncationsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
popsynth.aux_samplers.viewing_angle_sampler module
- class popsynth.aux_samplers.viewing_angle_sampler.ViewingAngleSampler[source]
Bases:
NonObservedAuxSampler
- max_angle
Module contents
- class popsynth.aux_samplers.DeltaAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- xp
- sigma
- __init__(name: str, observed: bool = True)[source]
A delta-function sampler for which the true value is fixed at
xp
. Assumes property is observed by default, in which case the observed value is sampled from the true value with some normally-distributed error,sigma
.- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xp (
AuxiliaryParameter
) – Value at which delta function is locatedsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.ViewingAngleSampler[source]
Bases:
NonObservedAuxSampler
- max_angle
- class popsynth.aux_samplers.LogNormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- mu
- tau
- sigma
- __init__(name: str, observed: bool = True)[source]
A Log normal sampler, where property ~ e^N(
mu
,sigma
).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter
) – Mean of the lognormaltau (
AuxiliaryParameter
) – Standard deviation of the lognormalsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.Log10NormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- mu
- tau
- sigma
- __init__(name: str, observed: bool = True)[source]
A Log10 normal sampler, where property ~ 10^N(
mu
,sigma
).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter
) – Mean of the log10normaltau (
AuxiliaryParameter
) – Standard deviation of the log10normalsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.NormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- mu
- tau
- sigma
- __init__(name: str, observed: bool = True)[source]
A normal distribution sampler, where property ~ N(
mu
,sigma
).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter
) – Mean of the normaltau (
AuxiliaryParameter
) – Standard deviation of the normalsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.TruncatedNormalAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- mu
- tau
- lower
- upper
- sigma
- __init__(name: str, observed: bool = True)[source]
A truncated normal sampler, where property ~ N(
mu
,sigma
), betweenlower
andupper
.- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
mu (
AuxiliaryParameter
) – Mean of the normaltau (
AuxiliaryParameter
) – Standard deviation of the normallower (
AuxiliaryParameter
) – Lower bound of the truncationupper (
AuxiliaryParameter
) – Upper bound of the truncationsigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.ParetoAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- xmin
- alpha
- sigma
- __init__(name: str, observed: bool = True)[source]
A pareto distribution sampler, where property ~ 1 / x^(
alpha
+ 1).- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xmin (
AuxiliaryParameter
) – Minimum value of the paretoalpha (
AuxiliaryParameter
) – Index of the paretosigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.PowerLawAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- xmin
- xmax
- alpha
- sigma
- __init__(name: str, observed: bool = True)[source]
A bounded power law distribution sampler, where property ~ x^``alpha``.
- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xmin (
AuxiliaryParameter
) – Minimum value of the power lawxmax (:class:``AuxiliaryParameter) – Maximum value of the power law
sigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True
- class popsynth.aux_samplers.BrokenPowerLawAuxSampler(name: str, observed: bool = True)[source]
Bases:
AuxiliarySampler
- xmin
- alpha
- xbreak
- beta
- xmax
- __init__(name: str, observed: bool = True)[source]
A broken power law distribution sampler, where property ~ x^``alpha`` for x <
xbreak
, and property ~ x^``beta`` for x >xbreak
.- Parameters
name (str) – Name of the property
observed (bool) – True if the property is observed, False if it is latent. Defaults to True
xmin (
AuxiliaryParameter
) – Minimum value of the broken power lawxmax (:class:``AuxiliaryParameter) – Maximum value of the broken power law
sigma (
AuxiliaryParameter
) – Standard deviation of normal distribution from which observed values are sampled, ifobserved
is True